Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol

25Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol [(R)-3,5-BTPE] is a valuable chiral intermediate for Aprepitant (Emend) and Fosaprepitant (Ivemend). Biocatalyzed asymmetric reduction is a preferred approach to synthesize highly optically active (R)-3,5-BTPE. However, the product concentration and productivity of reported (R)-3,5-BTPE synthetic processes remain unsatisfied. Results: A NADPH-dependent carbonyl reductase from Lactobacillus kefir (LkCR) was discovered by genome mining for reduction of 3,5-bis(trifluoromethyl) acetophenone (3,5-BTAP) into (R)-3,5-BTPE with excellent enantioselectivity. In order to synthesize (R)-3,5-BTPE efficiently, LkCR was coexpressed with glucose dehydrogenase from Bacillus subtilis (BsGDH) for NADPH regeneration in Escherichia coli BL21 (DE3) cells, and the optimal recombinant strain produced 250.3 g/L (R)-3,5-BTPE with 99.9% ee but an unsatisfied productivity of 5.21 g/(L h). Then, four different linker peptides were used for the fusion expression of LkCR and BsGDH in E. coli to regulate catalytic efficiency of the enzymes and improved NADPH-recycling efficiency. Using the best strain (E. coli/pET-BsGDH-ER/K(10 nm)-LkCR), up to 297.3 g/L (R)-3,5-BTPE with enantiopurity >99.9% ee was produced via reduction of as much as 1.2 M of substrate with a 96.7% yield and productivity of 29.7 g/(L h). Conclusions: Recombinant E. coli/pET-BsGDH-ER/K(10 nm)-LkCR was developed for the bioreduction of 3,5-BTAP to (R)-3,5-BTPE, offered the best results in terms of high product concentration and productivity, demonstrating its great potential in industrial manufacturing of (R)-3,5-BTPE.

Cite

CITATION STYLE

APA

Chen, K., Li, K., Deng, J., Zhang, B., Lin, J., & Wei, D. (2016). Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol. Microbial Cell Factories, 15(1). https://doi.org/10.1186/s12934-016-0585-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free