Composites Based on Poly(ε-caprolactone) and Graphene Oxide Modified with Oligo/Poly(Glutamic Acid) as Biomaterials with Osteoconductive Properties

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The development of new biodegradable biomaterials with osteoconductive properties for bone tissue regeneration is one of the urgent tasks of modern medicine. In this study, we proposed the pathway for graphene oxide (GO) modification with oligo/poly(glutamic acid) (oligo/poly(Glu)) possessing osteoconductive properties. The modification was confirmed by a number of methods such as Fourier-transform infrared spectroscopy, quantitative amino acid HPLC analysis, thermogravimetric analysis, scanning electron microscopy, and dynamic and electrophoretic light scattering. Modified GO was used as a filler for poly(ε-caprolactone) (PCL) in the fabrication of composite films. The mechanical properties of the biocomposites were compared with those obtained for the PCL/GO composites. An 18–27% increase in elastic modulus was found for all composites containing modified GO. No significant cytotoxicity of the GO and its derivatives in human osteosarcoma cells (MG-63) was revealed. Moreover, the developed composites stimulated the proliferation of human mesenchymal stem cells (hMSCs) adhered to the surface of the films in comparison with unfilled PCL material. The osteoconductive properties of the PCL-based composites filled with GO modified with oligo/poly(Glu) were confirmed via alkaline phosphatase assay as well as calcein and alizarin red S staining after osteogenic differentiation of hMSC in vitro.

Cite

CITATION STYLE

APA

Solomakha, O., Stepanova, M., Gofman, I., Nashchekina, Y., Rabchinskii, M., Nashchekin, A., … Korzhikova-Vlakh, E. (2023). Composites Based on Poly(ε-caprolactone) and Graphene Oxide Modified with Oligo/Poly(Glutamic Acid) as Biomaterials with Osteoconductive Properties. Polymers, 15(12). https://doi.org/10.3390/polym15122714

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free