Water mass redistributions in the global hydrosphere, including continental water storage change and non-steric sea level change, introduce variations in the hydrological angular momentum (HAM) and the oceanic angular momentum (OAM). Under the conservation of angular momentum, HAM and OAM variations are significant excitation sources of the Earth rotational variations at a wide range of timescales. In this paper, we estimate HAM and OAM variations and their excitations to polar motion and length-of-day variation using soil moisture and snow estimates and non-steric sea level change determined by TOPEX/Poseidon satellite radar altimeter observations and a simplified steric sea level change model. The results are compared with the variations of polar motion and LOD that are not accounted for by the atmosphere. This study indicates that seasonal continental water storage change provides significant contributions to both polar motion and LOD variation, especially to polar motion X, and the non-steric sea level change is responsible for a major part of the remaining excitations at both seasonal scale and high frequencies, particularly in polar motion Y and LOD. The good correlation between OAM contributions and the remaining excitations shows that large-scale non-tidal mass variation exists in the oceans and can be detected by TOPEX/Poseidon altimeter observations.
CITATION STYLE
Chen, J. L., Wilson, C. R., Chao, B. F., Shum, C. K., & Tapley, B. D. (2000). Hydrological and oceanic excitations to polar motion and length-of-day variation. Geophysical Journal International, 141(1), 149–156. https://doi.org/10.1046/j.1365-246X.2000.00069.x
Mendeley helps you to discover research relevant for your work.