Graphitized carbon nitride (g-C3N4), as a metal-free, visible-light-responsive photocatalyst, has a very broad application prospect in the fields of solar energy conversion and environmental remediation. The g-C3N4 photocatalyst owns a series of conspicuous characteristics, such as very suitable band structure, strong physicochemical stability, abundant reserves, low cost, etc. Research on the g-C3N4 or g-C3N4-based photocatalysts for real applications has become a competitive hot topic and a frontier area with thousands of publications over the past 17 years. In this paper, we carefully reviewed the recent advances in the synthesis and structural design of g-C3N4 materials for efficient photocatalysts. First, the crucial synthesis parameters of g-C3N4 were fully discussed, including the categories of g-C3N4 precursors, reaction temperature, reaction atmosphere and reaction duration. Second, the construction approaches of various nanostructures were surveyed in detail, such as hard and soft template, supramolecular preorganization and template-free approaches. Third, the characteristics of different exfoliation methods were compared and summarized. At the end, the problems of g-C3N4 materials in photocatalysis and the prospect of further development were disclosed and proposed to provide some key guidance for designing more efficient and applicable g-C3N4 or g-C3N4-based photocatalysts.
CITATION STYLE
Pei, J., Li, H., Zhuang, S., Zhang, D., & Yu, D. (2023, November 1). Recent Advances in g-C3N4 Photocatalysts: A Review of Reaction Parameters, Structure Design and Exfoliation Methods. Catalysts. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/catal13111402
Mendeley helps you to discover research relevant for your work.