The effects of reactive site location on the inhibitory properties of the serpin alpha(1)-antichymotrypsin.

13Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The large size of the serpin reactive site loop (RSL) suggests that the role of the RSL in protease inhibition is more complex than that of presenting the reactive site (P1 residue) to the protease. This study examines the effect on inhibition of relocating the reactive site (Leu-358) of the serpin alpha(1)-antichymotrypsin either one residue closer (P2) or further (P1') from the base of the RSL (Glu-342). alpha(1)-Antichymotrypsin variants were produced by mutation within the P4-P2' region; the sequence ITLLSA was changed to ITLSSA to relocate the reactive site to P2 (Leu-357) and to ITITLS to relocate it to P1' (Leu-359). Inhibition of the chymotrypsin-like proteases human chymase and chymotrypsin and the non-target protease human neutrophil elastase (HNE) were analyzed. The P2 variant inhibited chymase and chymotrypsin but not HNE. Relative to P1, interaction at P2 was characterized by greater complex stability, lower inhibition rate constants, and increased stoichiometry of inhibition values. In contrast, the P1' variant inhibited HNE (stoichiometry of inhibition = 4) but not chymase or chymotrypsin. However, inhibition of HNE was by interaction with Ile-357, the P2 residue. The P1' site was recognized by all proteases as a cleavage site. Covalent-complexes resistant to SDS-PAGE were observed in all inhibitory reactions, consistent with the trapping of the protease as a serpin-acyl protease complex. The complete loss in inhibitory activity associated with lengthening the Glu-342-reactive site distance by a single residue and the enhanced stability of complexes associated with shortening this distance by a single residue are compatible with the distorted-protease model of inhibition requiring full insertion of the RSL into the body of the serpin and translocation of the linked protease to the pole opposite from that of encounter.

Cite

CITATION STYLE

APA

Plotnick, M. I., Rubin, H., & Schechter, N. M. (2002). The effects of reactive site location on the inhibitory properties of the serpin alpha(1)-antichymotrypsin. The Journal of Biological Chemistry, 277(33), 29927–29935. https://doi.org/10.1074/jbc.M202374200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free