We used pilocarpine-induced seizures in mice to determine the impact of genetic background on the vulnerability of hippocampal neurons and associated changes of behavioral performance. The susceptibility of hippocampal neurons to seizure-induced cell death paralleled the severity of the seizures and depended on genetic background. Hippocampal neurons in C57BL/6 mice were most resistant to cell death, whereas they were highly vulnerable in FVB/N mice. The degree of neuronal degeneration in F1 hybrid mice obtained by crossing the two strains was at an intermediate level between the parent strains. Two weeks after the severe seizures, performance in a water-maze place navigation task showed a bimodal distribution. Seventeen of 19 (90%) F1 mice were completely unable to learn while the other two learned reasonably well. Of 28 C57BL/6 mice with similarly severe seizures, six were as strongly impaired as their F1 counterparts (22%). The remaining 22 performed normally, indicating a much lower probability of C57BL/6 mice to be affected. Treated mice showed a deficit of open-field exploration which was strongly correlated with the impairment in the place navigation task and was again more severe in F1 mice. Our results show that the vulnerability of hippocampal neurons to pilocarpine-induced seizures, as well as the associated behavioral changes, depended on genetic background. Furthermore, they confirm and extend our earlier finding that a relatively modest reduction of hippocampal cell death can be associated with dramatic changes of behavioral performance and emphasize the importance of tightly-controlled genetic backgrounds in biological studies.
CITATION STYLE
Mohajeri, M. H., Madani, R., Saini, K., Lipp, H. P., Nitsch, R. M., & Wolfer, D. P. (2004). The impact of genetic background on neurodegeneration and behavior in seizured mice. Genes, Brain and Behavior, 3(4), 228–239. https://doi.org/10.1111/j.1601-1848.2004.00073.x
Mendeley helps you to discover research relevant for your work.