Background: Atherosclerosis is an inflammatory process involving activation of monocytes recruited by various chemoattractant factors, among which lipoprotein(a) and its specific apolipoprotein apo(a). Lp(a) contains a specific apolipoprotein apo(a) which size is determined by a variable number of repeats of a specific structural domain, the kringle IV type 2 (IV-2). Lp(a) plasma concentration and apo(a) size is inversely correlated, and smaller apo(a) are major risk factors for coronary heart disease. Design and methods: The aim of this study was to evaluate the effect of recombinant apo(a) isoforms (containing 10, 18 or 34 kringles) on monocytes interacting with type I collagen. Results: Apo(a) isoforms stimulated reactive oxygen species (ROS) and matrix metalloproteinase-9 (MMP-9) production by monocytes, and not modified monocytes adhesion on type I collagen. This effect was specific of apo(a) since no effect was observed in the presence of plasminogen and was inversely related to apo(a) size. The lysine analogue 6-aminohexanoic acid which blocks the lysine binding sites (LBS), and carboxypeptidase B (CpB) which cleaves carboxy-terminal lysine residues, abolished apo(a)-induced ROS and MMP-9 production, highlighting an effect mediated by apo(a) lysing-binding sites. Conclusions: These results indicate that activation of collagen-primed monocytes stimulated with apo(a) is a Kringle number-dependent effect and reinforce the hypothesis of a role for small size apo(a) isoforms in atherothrombosis.
CITATION STYLE
Sabbah, N., Jaisson, S., Garnotel, R., Anglés-Cano, E., & Gillery, P. (2019). Small size apolipoprotein(a) isoforms enhance inflammatory and proteolytic potential of collagen-primed monocytes. Lipids in Health and Disease, 18(1). https://doi.org/10.1186/s12944-019-1106-4
Mendeley helps you to discover research relevant for your work.