Stearic acid accumulation in macrophages induces toll-like receptor 4/2-independent inflammation leading to endoplasmic reticulum stress-mediated apoptosis.

94Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

Abstract

Elevated serum free fatty acid levels are associated with an increased risk of cardiovascular disease and type 2 diabetes mellitus. Macrophages are recruited to atherosclerotic plaques and metabolic tissues during obesity and accumulate lipids, including free fatty acids. We investigated the molecular consequences of intracellular saturated free fatty acid accumulation in macrophages. Previously, we demonstrated that cotreatment of mouse peritoneal macrophages (MPMs) with stearic acid and triacsin C (an inhibitor of long-chain acyl coenzyme A synthetases) results in intracellular free fatty acid accumulation and apoptosis. Here, we used Western blotting analysis, real-time reverse transcription polymerase chain reaction, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining to assess endoplasmic reticulum (ER) stress, inflammation, and apoptosis in MPMs. Intracellular stearic acid accumulation induces Toll-like receptor 4/2-independent inflammation that results in ER stress-mediated apoptosis of MPMs. Polarization of MPMs to a proinflammatory M1 phenotype increases their susceptibility to inflammation and ER stress, but not apoptosis, in response to cotreatment with stearic acid and triacsin C. Intracellular accumulation of stearic acid in MPMs activates inflammatory signaling, leading to ER stress-mediated apoptosis. M1 macrophages are more prone to stearic acid-induced inflammation and ER stress. These same pathways may be activated in macrophages residing in atherosclerotic plaques and metabolic tissues during conditions of obesity and hyperlipidemia.

Cite

CITATION STYLE

APA

Anderson, E. K., Hill, A. A., & Hasty, A. H. (2012). Stearic acid accumulation in macrophages induces toll-like receptor 4/2-independent inflammation leading to endoplasmic reticulum stress-mediated apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(7), 1687–1695. https://doi.org/10.1161/ATVBAHA.112.250142

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free