The constitutive equation of AA6082-T6 sheets is investigated by an extended Rousselier damage model. Previous research is mainly comprised of single-pull test specimens, notched tensile specimens, tensile specimens with a hole, and shear specimens. To decrease the natural material errors, a new specimen is used. In this paper, a clinched joint is regarded as a specimen to calibrate the initial void volume fraction kw and the shear damage parameter f0 by using the orthogonal analysis method, which can reduce the simulation times and accuracy. It also reveals that the initial void volume fraction f0 affects the void volume fraction in the neck and the groove of the clinched joint, and the shear damage parameter kw affects just the void volume fraction f in the neck of the clinched joint. It checks the force-displacement curve, shape of the clinched joint, and the fracture location, and approves that these damage parameters can describe the deformation process, fracture location, and shape of the clinched joint.
CITATION STYLE
Xu, F., Zhang, H., Zhao, S., Chen, C., Cao, M., & Chen, W. (2018). Optimized calibration procedure of the damage parameters of AA6082-T6 sheets. Materials, 11(2). https://doi.org/10.3390/ma11020248
Mendeley helps you to discover research relevant for your work.