Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression

58Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Snail, a zinc-finger transcription factor, induces epithelial-mesenchymal transition (EMT), which is associated with increased cell migration and metastasis in cancer cells. Rac1 is a small G-protein which upon activation results in formation of lamellipodia, the first protrusions formed by migrating cells. We have previously shown that Snail promotes cell migration through down-regulation of maspin tumor suppressor. We hypothesized that Snail’s regulation of cell migration may also involve Rac1 signaling regulated by PI3K/AKT and/or MAPK pathways. We found that Snail overexpression in LNCaP and 22Rv1 prostate cancer cells increased Rac1 activity associated with increased cell migration, and the Rac1 inhibitor, NSC23766, could inhibit Snail-mediated cell migration. Conversely, Snail downregulation using shRNA in the aggressive C4–2 prostate cancer cells decreased Rac1 activity and cell migration. Moreover, Snail overexpression increased ERK and PI3K/AKT activity in 22Rv1 prostate cancer cells. Treatment of Snail-overexpressing 22Rv1 cells with LY294002, PI3K/AKT inhibitor or U0126, MEK inhibitor, decreased cell migration significantly, but only LY294002 significantly reduced Rac1 activity, suggesting that Snail promotes Rac1 activation via the PI3K/AKT pathway. Furthermore, 22Rv1 cells overexpressing Snail displayed decreased maspin levels, while inhibition of maspin expression in 22Rv1 cells with siRNA, led to increased PI3K/AKT, Rac1 activity and cell migration, without affecting ERK activity, suggesting that maspin is upstream of PI3K/AKT. Overall, we have dissected signaling pathways by which Snail may promote cell migration through MAPK signaling or alternatively through PI3K/AKT-Rac1 signaling that involves Snail inhibition of maspin tumor suppressor. This may contribute to prostate cancer progression.

Cite

CITATION STYLE

APA

Henderson, V., Smith, B., Burton, L. J., Randle, D., Morris, M., & Odero-Marah, V. A. (2015). Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression. Cell Adhesion and Migration, 9(4), 255–264. https://doi.org/10.1080/19336918.2015.1013383

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free