The as-cast microstructure, element segregation and solidification behavior of a multi-alloyed superalloy ЭК151 have been investigated. The results show that the severe element segregation leads to the complicated precipitations at the inter-dendritic region, including η-Ni3(Ti, Nb), eutectic (γ + γ′) and Laves, which shows the characteristics of both Ti, Al-strengthened and Nb-strengthened alloys. Differential thermal analysis, heating and quenching tests reveal the solidification sequence as follows: Liquids → γ matrix → (Nb, Ti)C → η-Ni3(Ti, Nb) → eutectic (γ + γ′) → Laves. The melting points are between 1250 and 1260 °C for (Nb, Ti)C, between 1200 and 1210 °C for η phase, between 1180 and 1190 °C for eutectic (γ + γ′) and Laves. γ′ initially precipitates from matrix at 1150 °C and achieves the maximum precipitation at 1130 °C. According to the microstructure evolution captured during solidification and composition analysis by an energy dispersive spectrometer and electron probe microanalyzer, (Nb, Ti)/Al ratio is put forward to explain the formation of η-Ni3(Ti, Nb) and eutectic (γ + γ′). The solidification of γ matrix increased the Nb, Ti concentration in the residual liquids, so the high (Nb, Ti)/Al ratio would result in the formation of η-Ni3(Ti, Nb); the precipitation of the phase consumed Nb and Ti and decreased the (Nb, Ti)/Al ratio in the liquid, which led to the precipitation of eutectic (γ + γ′). Laves formed by the sides of η-Ni3(Ti, Nb) and in front of the eutectic (γ + γ′) after Al, Ti were further depleted by the two phases and Cr, Co, Mo were rejected to liquids.
CITATION STYLE
Tan, Y. G., Liu, F., Zhang, A. W., Han, D. W., Yao, X. Y., Zhang, W. W., & Sun, W. R. (2019). Element Segregation and Solidification Behavior of a Nb, Ti, Al Co-Strengthened Superalloy ЭК151. Acta Metallurgica Sinica (English Letters), 32(10), 1298–1308. https://doi.org/10.1007/s40195-019-00894-3
Mendeley helps you to discover research relevant for your work.