We investigated the effect of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) deposition on the chemical and mechanical stability of Ag nanowire flexible electrodes. A large number of bending cycles, up to 500,000 cycles, were imposed on the Ag nanowire electrodes with and without PEDOT:PSS overcoating layer. In situ resistance measurement during bending tests revealed that the Ag nanowire electrode with PEDOT:PSS overcoating layer was mechanically reliable, showing a 21.9% increase in resistance after 500,000 cycles of bending. Scanning electron microscope images revealed that the failure of the Ag nanowire network occurred along with cracks initiated in the PEDOT:PSS layer, which resulted in the increase in resistance under bending. Furthermore, the PEDOT:PSS deposition enhanced the chemical stability of Ag nanowire electrode, which showed no significant increase in resistance after exposure in air for 50 days. Our study underscored that PEDOT:PSS is effective in protecting the Ag nanowires, while maintaining the high mechanical stability.
CITATION STYLE
Hwang, B., & Lim, S. (2017). PEDOT:PSS overcoating layer for mechanically and chemically stable Ag nanowire flexible transparent electrode. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/1489186
Mendeley helps you to discover research relevant for your work.