Online Charging Strategy for Electric Vehicle Clusters Based on Multi-Agent Reinforcement Learning and Long–Short Memory Networks

3Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

The electric vehicle (EV) cluster charging strategy is a key factor affecting the grid load shifting in vehicle-to-grid (V2G) mode. The conflict between variable tariffs and electric-powered energy demand at different times of the day directly affects the charging cost, and in the worst case, can even lead to the collapse of the whole grid. In this paper, we propose a multi-agent reinforcement learning and long-short memory network (LSTM)-based online charging strategy for community home EV clusters to solve the grid load problem and minimize the charging cost while ensuring benign EV cluster charging loads. In this paper, the accurate prediction of grid prices is achieved through LSTM networks, and the optimal charging strategy is derived from the MADDPG multi-agent reinforcement learning algorithm. The simulation results show that, compared with the DNQ algorithm, the EV cluster online charging strategy algorithm can effectively reduce the overall charging cost by about 5.8% by dynamically adjusting the charging power at each time period while maintaining the grid load balance.

Cite

CITATION STYLE

APA

Shen, X., Zhang, Y., & Wang, D. (2022). Online Charging Strategy for Electric Vehicle Clusters Based on Multi-Agent Reinforcement Learning and Long–Short Memory Networks. Energies, 15(13). https://doi.org/10.3390/en15134582

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free