The influence of instrumental line shape degradation on NDACC gas retrievals: Total column and profile

20Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

We simulated instrumental line shape (ILS) degradations with respect to typical types of misalignment, and compared their influence on each NDACC (Network for Detection of Atmospheric Composition Change) gas. The sensitivities of the total column, the root mean square (rms) of the fitting residual, the total random uncertainty, the total systematic uncertainty, the total uncertainty, degrees of freedom for signal (DOFs), and the profile with respect to different levels of ILS degradation for all current standard NDACC gases, i.e. O3, HNO3, HCl, HF, ClONO2, CH4, CO, N2O, C2H6, and HCN, were investigated. The influence of an imperfect ILS on NDACC gases' retrieval was assessed, and the consistency under different meteorological conditions and solar zenith angles (SZAs) were examined. The study concluded that the influence of ILS degradation can be approximated by the linear sum of individual modulation efficiency (ME) amplitude influence and phase error (PE) influence. The PE influence is of secondary importance compared with the ME amplitude. Generally, the stratospheric gases are more sensitive to ILS degradation than the tropospheric gases, and the positive ME influence is larger than the negative ME. For a typical ILS degradation (10ĝ€%), the total columns of stratospheric gases O3, HNO3, HCl, HF, and ClONO2 changed by 1.9, 0.7, 4, 3, and 23ĝ€%, respectively, while the columns of tropospheric gases CH4, CO, N2O, C2H6, and HCN changed by 0.04, 2.1, 0.2, 1.1, and 0.75ĝ€%, respectively. In order to suppress the fractional difference in the total column for ClONO2 and other NDACC gases within 10 and 1ĝ€%, respectively, the maximum positive ME degradations for O3, HNO3, HCl, HF, ClONO2, CO, C2H6, and HCN should be less than 6, 15, 5, 5, 5, 5, 9, and 13ĝ€%, respectively; the maximum negative ME degradations for O3, HCl, and HF should be less than 6, 12, and 12ĝ€c%, respectively; the influence of ILS degradation on CH4 and N2O can be regarded as being negligible.

Cite

CITATION STYLE

APA

Sun, Y., Palm, M., Liu, C., Hase, F., Griffith, D., Weinzierl, C., … Notholt, J. (2018). The influence of instrumental line shape degradation on NDACC gas retrievals: Total column and profile. Atmospheric Measurement Techniques, 11(5), 2879–2896. https://doi.org/10.5194/amt-11-2879-2018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free