Multiple oscillatory rhythms determine the temporal organization of perception

69Citations
Citations of this article
263Readers
Mendeley users who have this article in their library.

Abstract

Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8-10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6-7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception.

Author supplied keywords

Cite

CITATION STYLE

APA

Ronconi, L., Oosterhof, N. N., Bonmassar, C., & Melcher, D. (2017). Multiple oscillatory rhythms determine the temporal organization of perception. Proceedings of the National Academy of Sciences of the United States of America, 114(51), 13435–13440. https://doi.org/10.1073/pnas.1714522114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free