Dark matter response to galaxy formation

131Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We have resimulated the six galaxy-sized haloes of the Aquarius Project including metal-dependent cooling, star formation and supernova feedback. This allows us to study not only how dark matter haloes respond to galaxy formation, but also how this response is affected by details of halo assembly history. In agreement with previous work, we find baryon condensation to lead to increased dark matter concentration. Dark matter density profiles differ substantially in shape from halo to halo when baryons are included, but in all cases the velocity dispersion decreases monotonically with radius. Some haloes show an approximately constant dark matter velocity anisotropy with β ≈ 0.1-0.2, while others retain the anisotropy structure of their baryon-free versions. Most of our haloes become approximately oblate in their inner regions, although a few retain the shape of their dissipationless counterparts. Pseudo-phase-space densities are described by a power law in radius of altered slope when baryons are included. The shape and concentration of the dark matter density profiles are not well reproduced by published adiabatic contraction models. The significant spread we find in the density and kinematic structure of our haloes appears related to differences in their formation histories. Such differences already affect the final structure in baryon-free simulations, but they are reinforced by the inclusion of baryons, and new features are produced. The details of galaxy formation need to be better understood before the inner dark matter structure of galaxies can be used to constrain cosmological models or the nature of dark matter. © 2010 The Authors. Journal compilation © 2010 RAS.

Cite

CITATION STYLE

APA

Tissera, P. B., White, S. D. M., Pedrosa, S., & Scannapieco, C. (2010). Dark matter response to galaxy formation. Monthly Notices of the Royal Astronomical Society, 406(2), 922–935. https://doi.org/10.1111/j.1365-2966.2010.16777.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free