Background: Hypoxia-inducible factor 1 (HIF-1α) expression induced by hypoxia plays a critical role in promoting tumor angiogenesis and metastasis. However, the molecular mechanisms underlying the induction of HIF-1α in tumor cells remain unknown. Methodology/Principal Findings: In this study, we reported that hypoxia could induce HIF-1α and VEGF expression accompanied by Rac1 activation in MCF-7 breast cancer cells. Blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1 (T17N) or Rac1 siRNA downregulated hypoxia-induced HIF-1α and VEGF expression. Furthermore, Hypoxia increased PI3K and ERK signaling activity. Both PI3K inhibitor LY294002 and ERK inhibitor U0126 suppressed hypoxia-induced Rac1 activation as well as HIF-1α expression. Moreover, hypoxia treatment resulted in a remarkable production of reactive oxygen species (ROS). N-acetyl-L-cysteine, a scavenger of ROS, inhibited hypoxia-induced ROS generation, PI3K, ERK and Rac1 activation as well as HIF-1α expression. Conclusions/Significance: Taken together, our study demonstrated that hypoxia-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of PI3K and ERK signaling, and subsequent activation of Rac1. © 2011 Du et al.
CITATION STYLE
Du, J., Xu, R., Hu, Z., Tian, Y., Zhu, Y., Gu, L., & Zhou, L. (2011). PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells. PLoS ONE, 6(9). https://doi.org/10.1371/journal.pone.0025213
Mendeley helps you to discover research relevant for your work.