HIF-1α protects osteoblasts from ROS-induced apoptosis

14Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The regulatory mechanism of hypoxia-inducible factor-1α (HIF-1α) is complex. HIF-1α may inhibit or promote apoptosis in osteoblasts under different physiological conditions, and induce bone regeneration and repair injury in coordination with angiogenesis. The relationship between H2O2 and HIFs is complex, and this study aimed to explore the role of HIF-1α in H2O2-induced apoptosis. Dimethyloxallyl glycine (DMOG) and 2-Methoxyestradiol (2ME) were used to stabilize and inhibit HIFs, respectively. Cell viability was assessed with CCK8. Apoptosis and ROS levels were detected by flow cytometry, and HIF mRNA expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR). Western blot was performed to detect HIF-1α, HIF-2α, Bax, Bak, Bcl-2, Bcl-XL, caspase-9, and PCNA protein amounts. Our data suggest that both HIF-1α and HIF-2α play a protective role in oxidative stress. HIF-1α reduces H2O2-induced apoptosis by upregulating Bcl-2 and Bcl-XL, downregulating Bax, Bak, and caspase-9, stabilizing intracellular ROS levels, and promoting the repair of H2O2-induced DNA damage to reduce apoptosis.

Author supplied keywords

Cite

CITATION STYLE

APA

Wang, X., Wei, L., Li, Q., & Lai, Y. (2022). HIF-1α protects osteoblasts from ROS-induced apoptosis. Free Radical Research, 56(2), 143–153. https://doi.org/10.1080/10715762.2022.2037581

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free