Dynamic structure of joint-action stimulus-response activity

13Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

Abstract

The mere presence of a co-actor can influence an individual's response behavior. For instance, a social Simon effect has been observed when two individuals perform a Go/No-Go response to one of two stimuli in the presence of each other, but not when they perform the same task alone. Such effects are argued to provide evidence that individuals co-represent the task goals and the to-be-performed actions of a co-actor. Motivated by the complex-systems approach, the present study was designed to investigate an alternative hypothesis - that such joint-action effects are due to a dynamical (time-evolving) interpersonal coupling that operates to perturb the behavior of socially situated actors. To investigate this possibility, participants performed a standard Go/No-Go Simon task in joint and individual conditions. The dynamic structure of recorded reaction times was examined using fractal statistics and instantaneous cross-correlation. Consistent with our hypothesis that participants responding in a shared space would become behaviorally coupled, the analyses revealed that reaction times in the joint condition displayed decreased fractal structure (indicative of interpersonal perturbation processes modulating ongoing participant behavior) compared to the individual condition, and were more correlated across a range of time-scales compared to the reaction times of pseudo-pair controls. Collectively, the findings imply that dynamic processes might underlie social stimulus-response compatibility effects and shape joint cognitive processes in general. © 2014 Malone et al.

Cite

CITATION STYLE

APA

Malone, M. L., Castillo, R. D., Kloos, H., Holden, J. G., & Richardson, M. J. (2014). Dynamic structure of joint-action stimulus-response activity. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0089032

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free