Post-translational loss of renal trpv5 calcium channel expression, Ca 2+ wasting, and bone loss in experimental colitis

33Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background & Aims Dysregulated Ca2+ homeostasis likely contributes to the etiology of inflammatory bowel disease-associated loss of bone mineral density. Experimental colitis leads to decreased expression of Klotho, a protein that supports renal Ca2+ reabsorption by stabilizing the transient receptor potential vanilloid 5 (TRPV5) channel on the apical membrane of distal tubule epithelial cells. Methods Colitis was induced in mice via administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) or transfer of CD4+interleukin-10-/- and CD4+, CD45RBhi T cells. We investigated changes in bone metabolism, renal processing of Ca2+, and expression of TRPV5. Results Mice with colitis had normal serum levels of Ca2+ and parathormone. Computed tomography analysis showed a decreased density of cortical and trabecular bone, and there was biochemical evidence for reduced bone formation and increased bone resorption. Increased fractional urinary excretion of Ca2+ was accompanied by reduced levels of TRPV5 protein in distal convoluted tubules, with a concomitant increase in TRPV5 sialylation. In mouse renal intermedullary collecting duct epithelial (mIMCD3) cells transduced with TRPV5 adenovirus, the inflammatory cytokines tumor necrosis factor, interferon-γ, and interleukin-1β reduced levels of TRPV5 on the cell surface, leading to its degradation. Cytomix induced interaction between TRPV5 and UBR4 (Ubiquitin recoginition 4), an E3 ubiquitin ligase; knockdown of UBR4 with small interfering RNAs prevented cytomix-induced degradation of TRPV5. The effects of cytokines on TRPV5 were not observed in cells stably transfected with membrane-bound Klotho; TRPV5 expression was preserved when colitis was induced with TNBS in transgenic mice that overexpressed Klotho or in mice with T-cell transfer colitis injected with soluble recombinant Klotho. Conclusions After induction of colitis in mice via TNBS administration or T-cell transfer, tumor necrosis factor and interferon-γ reduced the expression and activity of Klotho, which otherwise would protect TRPV5 from hypersialylation and cytokine-induced TRPV5 endocytosis, UBR4-dependent ubiquitination, degradation, and urinary wasting of Ca2+. © 2013 by the AGA Institute.

Cite

CITATION STYLE

APA

Radhakrishnan, V. M., Ramalingam, R., Larmonier, C. B., Thurston, R. D., Laubitz, D., Midura-Kiela, M. T., … Ghishan, F. K. (2013). Post-translational loss of renal trpv5 calcium channel expression, Ca 2+ wasting, and bone loss in experimental colitis. Gastroenterology, 145(3), 613–624. https://doi.org/10.1053/j.gastro.2013.06.002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free