Various modifications of proteins and the resulting proteoforms of a protein can associate with many diseases and are also significantly involved in the rapid regulation of hemostasis and thrombosis. For example, the release of prostacyclin from the intact endothelium and the consequent following phosphorylation of VASP in platelets is a post-translational regulation to keep them in a quiescent state. In Alzheimer’s disease, proteoforms arise from the altered cleavage of the amyloid precursor protein, which finally causes amyloid plaques in the brain. This changed processing of the amyloid precursor protein can also be detected in platelets, making them an attractive source of biomarkers for this neurodegenerative disease. Age-related or prothrombotic disorders can have multiple origins, including genomic, transcriptional, and translational factors, which together can be mapped at the proteome level. Hence, recording these dynamic protein changes under physiological and pathophysiological conditions is paramount in platelet proteomics. To effectively study diseases through platelet proteomics, it is crucial to consider platelets’ primary regulatory mechanism and thoroughly evaluate the disparities between the two leading proteomics technologies, top-down and bottom-up approaches. This commentary provides insights into the differences between these two technologies, which are particularly noticeable in detecting the different proteoforms of a protein.
CITATION STYLE
Zellner, M. (2023). How can platelet proteomics best be used to interrogate disease? Platelets. Taylor and Francis Ltd. https://doi.org/10.1080/09537104.2023.2220046
Mendeley helps you to discover research relevant for your work.