Fabrication of Cu2ZnSnS4 thin films from ball-milled nanoparticle inks under various annealing temperatures

6Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Cu2ZnSnS4 (CZTS) has been recognized as a promising thin-film absorber material of chalcopyrite-related solar cells. A two-stage method for fabricating CZTS films using CZTS nanoparticles was developed. Nanocrystal inks fabricated by a ball-milling method was utilized to °C deposit CZTS precursors by spin-coating approach. The CZTS precursors were annealed in the sulfur atmosphere under different annealing temperatures ranging from 550 °C to 650 °C. Influences of annealing temperature on grain growth, composition, crystallinity, and photovoltaic properties of CZTS films were characterized. With the increase of annealing temperature, grain growth was enhanced, while the sulfur atomic ratio fist increased then decreased. The crystallinity of the films was significantly improved after the annealing, and the obvious peak of the secondary phase of ZnS, were observed from the X-ray diffraction results, when the annealing temperature increased to 625 °C. However, the secondary phase was not detected from the surface Raman spectrum. Through comparing the Raman spectrum of different areas of the CZTS film, secondary phases of ZnS and SnS were observed, indicating the decomposition of CZTS films, due to the high temperature. The highest conversion efficiency of 7.5% was obtained when the annealing temperature was 600 °C.

Cite

CITATION STYLE

APA

Zhang, X., Fu, E., Zheng, M., & Wang, Y. (2019). Fabrication of Cu2ZnSnS4 thin films from ball-milled nanoparticle inks under various annealing temperatures. Nanomaterials, 9(11). https://doi.org/10.3390/nano9111615

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free