We simulated the use of simultaneous sinusoidal changes of inspired O2 and N2O (Williams et al., J Appl Physiol, 1994; 76: 2130-9) at fractional concentrations up to 0.3 and 0.7, respectively, to estimate FRC and pulmonary blood flow (PBF) during anaesthesia, using O2 as an insoluble indicator. Hahn's approximate equations, which neglect the effect of pulmonary uptake and excretion on expiratory flow, estimate dead space and alveolar volume (V(A)) with systematic errors less than 10%, but yield systematic errors in PBF which are approximately proportional to F1(N)2(O) in magnitude. A correction factor (I - P̄)-1 for Hahn's equations for PBF (where P̄ is the mean partial pressure of the soluble indicator) reduces the dependence of PBF estimates on F1(N)2(O), and the solution of equations describing the simultaneous mass balance of both indicators yields accurate results for a wide range of mean F1(N)2(O). However, PBF estimates are sensitive to measurement errors and a third gas must be present to ensure that the indicator gases behave independently.
CITATION STYLE
Turner, M. J., Weismann, D., Járos, G. G., & Baker, A. B. (2000). Estimation of pulmonary blood flow from sinusoidal gas exchange during anaesthesia: A theoretical study. British Journal of Anaesthesia, 85(3), 371–378. https://doi.org/10.1093/bja/85.3.371
Mendeley helps you to discover research relevant for your work.