Hepatic overexpression of hemopexin inhibits inflammation and vascular stasis in murine models of sickle cell disease

39Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sickle cell disease (SCD) patients have low serum hemopexin (Hpx) levels due to chronic hemolysis. We hypothesized that in SCD mice, hepatic overexpression of hemopexin would scavenge the proximal mediator of vascular activation, heme, and inhibit inflammation and microvascular stasis. To examine the protective role of Hpx in SCD, we transplanted bone marrow from NY1DD SCD mice into Hpx-/- or Hpx+/+ C57BL/6 mice. Dorsal skin fold chambers were implanted 13 wks post-transplant, and microvascular stasis (% nonflowing venules) was evaluated in response to heme infusion. Hpx-/- sickle mice had significantly greater microvascular stasis in response to heme infusion than Hpx+/+ sickle mice (p < 0.05), demonstrating the protective effect of Hpx in SCD. We utilized Sleeping Beauty (SB) transposon-mediated gene transfer to overexpress wild-type rat Hpx (wt-Hpx) in NY1DD and Townes-SS SCD mice. Control SCD mice were treated with lactated Ringer’s solution (LRS) or a luciferase (Luc) plasmid. Plasma and hepatic Hpx were significantly increased compared with LRS and Luc controls. Microvascular stasis in response to heme infusion in NY1DD and Townes-SS mice overexpressing wt-Hpx had significantly less stasis than controls (p < 0.05). Wt-Hpx overexpression markedly increased hepatic nuclear Nrf2 expression, HO-1 activity and protein, and the heme-Hpx binding protein and scavenger receptor CD91/LRP1, and decreased NF-κB activation. Two missense (ms)-Hpx SB constructs that bound neither heme nor the Hpx receptor CD91/LRP1 did not prevent heme-induced stasis. In conclusion, increasing Hpx levels in transgenic sickle mice via gene transfer activates the Nrf2/HO-1 antioxidant axis and ameliorates inflammation and vasoocclusion.

Cite

CITATION STYLE

APA

Vercellotti, G. M., Zhang, P., Nguyen, J., Abdulla, F., Chen, C., Nguyen, P., … Belcher, J. D. (2016). Hepatic overexpression of hemopexin inhibits inflammation and vascular stasis in murine models of sickle cell disease. Molecular Medicine, 22, 437–451. https://doi.org/10.2119/molmed.2016.00063

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free