Facilitation of interspecies electron transfer in anaerobic processes through pine needle biochar

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Role of biochar in promoting methanogenesis during anaerobic processes was investigated in this research. Biochar produced from Himalayan pine needles was used as medium for conductive material mediated interspecies electron transfer (CM-IET) amongst the electron producing microorganisms and electron consuming methanogenic archaea. Three anaerobic continuous stirrer tank reactors (CSTRs) with 0, 5 and 10 g/L pine needle biochar (PNB) were operated at steady state organic loading rate (OLR) of 2.0–2.5 kgCOD/(m3.d). R0 (0 g/L PNB), representing indirect interspecies electron transfer (IIET), failed at an OLR of 2.0 kgCOD/(m3.d) due to the highest volatile fatty acid (VFA) concentration of 6,300 mg/L among the three CSTRs. On the other hand, at an OLR of 2.5 kgCOD/(m3.d), R2 (10 g/L PNB) showed the most superior performance with chemical oxygen demand (COD) removal of 55% and volatile fatty acid (VFA) concentration of 3,500 mg/L, while R1 (5 g/L PNB) recorded COD removal of 45% and VFA concentration of 4,400 mg/L. In comparison, fixed biofilm reactor (FBR) with 80 g/L of PNB as support material operated satisfactorily at OLR of 13.8 kgCOD/(m3.d) with 70% COD removal and VFA concentration of 1,400 mg/L. These investigations confirmed the beneficial role of biochar in anaerobic processes by promoting CM-IET amongst VFA degrading bacteria and methane producing archaea.

Cite

CITATION STYLE

APA

Mohan, C., & Annachhatre, A. (2022). Facilitation of interspecies electron transfer in anaerobic processes through pine needle biochar. Water Science and Technology, 86(9), 2197–2212. https://doi.org/10.2166/wst.2022.316

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free