Rationale: Solid-phase microextraction (SPME) provides high-throughput sample cleanup and pre-concentration. Here we demonstrate coated glass capillaries (CGCs) as SPME devices for specific applications in direct analysis in real time (DART) mass spectrometry, referred to as “CGC-DART”, for rapid screening of environmental contaminants at low parts-per-trillion detection limits and with accurate identification of analytes. Methods: The extraction is performed in a one-step process in minutes by dipping the CGC in solutions containing the analytes, and then placing the CGC in a DART source for analysis. CGCs are disposable and relatively inexpensive in comparison with SPME devices, and can be prepared with hydrophobic, hydrophilic or mixed-mode materials similar to SPME. CGCs were prepared by adsorption coating with incubation of capillaries in saturated solutions of octadecylamine or covalent activation of silanes. Results: Quantitation is shown with perfluorooctanoic acid (PFOA) at 1 ppt to 100 ppb, with the lowest detection at 500 parts-per quadrillion (ppq) in tap water. One-step extraction of contaminated groundwater from Northern Queensland, Australia, revealed perfluorooctane sulfonate (PFOS) and perfluorohexanesulfonamide as well as C4–C8 perfluoroalkyl carboxylic acids. A soil sample taken near a former military air base (New Hampshire, USA) revealed the presence of perfluorononanoic acid (PFNA) at 1 ppb and traces of perfluoroheptanoic acid. Conclusions: CGC-DART enabled one-step extraction of PFASs in minutes with mL sample volumes at low concentrations as shown for the standards and contaminated soil and water samples. DART-MS combined with Kendrick mass defect analysis enabled accurate identification of PFASs without chromatography steps, as fluorinated compounds are mass deficient and easily distinguished over background signal.
CITATION STYLE
Cody, R., & Maleknia, S. D. (2020). Coated glass capillaries as SPME devices for DART mass spectrometry. Rapid Communications in Mass Spectrometry, 34(23). https://doi.org/10.1002/rcm.8946
Mendeley helps you to discover research relevant for your work.