Propofol Suppresses Microglia Inflammation by Targeting TGM2/NF- κ B Signaling

14Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Propofol is a known intravenous hypnotic drug used for induction and maintenance of sedation and general anesthesia. Emerging studies also reveal a neuroprotective effect of propofol in diverse diseases of neuronal injuries via modulating microglia activation. In this study, we aimed to uncover the downstream targets of propofol in this process. Methods. RNA sequencing analysis to identify genes implicated in the propofol-mediated neuroprotective effect. Quantitative real-time PCR, enzyme-linked immunosorbent assay, and Western blotting analysis were performed to analyze inflammatory gene expression, cytokine levels, and TGM2. BV2 cells and primary microglia were used for functional verification and mechanism studies. Results. The multifunctional enzyme transglutaminase 2 (TGM2) was identified as a putative functional mediator of propofol. TGM2 was significantly upregulated in lipopolysaccharide- (LPS-) primed BV2 cells. Genetic silencing of TGM2 abolished LPS-induced microglial activation. Notably, gain-of-function experiments showed that the proinflammatory effects of TGM2 were dependent on its GTP binding activity instead of transamidase activity. Then, TGM2 was revealed to activate the NF-κB signaling pathway to facilitate microglial activation. Propofol can inhibit TGM2 expression and NF-κB signaling in BV2 cells and primary microglia. Ectopic expression of TGM2 or constitutively active IKKβ (CA-IKKβ) can compromise propofol-induced anti-inflammatory effects. Conclusions. Our findings suggest that TGM2-mediated activation of NF-κB signaling is an important mechanism in the propofol-induced neuroprotective effect that prevents microglial activation.

Cite

CITATION STYLE

APA

Hou, Y., Xiao, X., Yu, W., & Qi, S. (2021). Propofol Suppresses Microglia Inflammation by Targeting TGM2/NF- κ B Signaling. Journal of Immunology Research, 2021. https://doi.org/10.1155/2021/4754454

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free