Circ_0001897 regulates high glucose-induced angiogenesis and inflammation in retinal microvascular endothelial cells through miR-29c-3p/transforming growth factor beta 2 axis

4Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Diabetic retinopathy (DR) has become the leading cause of blindness among adults at working age. Previous studies have implicated circ_0001897 in the development of DR. In this study, we investigated the functional roles and mechanisms of circ_0001897 in high glucose-induced angiogenesis and inflammation. Peripheral blood samples from DR patients and healthy controls were collected to examine circ_0001897 expression, which demonstrated a significant upregulation of circ_0001897 in DR patients. To investigate the functional role and mechanisms of circ_0001897, human retinal microvascular endothelial cells (HRECs) were treated with high glucose (HG) to establish an in vitro DR model of endothelial cells. HG treatment induced the upregulation of circ_0001897 in HRECs, and enhanced cell proliferation, inflammatory responses, as well as in vitro angiogenesis. Circ_0001897 knockdown significantly attenuated the cell proliferation, inflammatory responses, and angiogenesis induced by HG treatment. Mechanistically, circ_0001897 sponged and inhibited the activity of mir-29c-3p, which in turn regulates the downstream target transforming growth factor beta 2 (TGFB2). The effects of circ_0001897 knockdown could be rescued by mir-29c-3p inhibitor or TGFB2 overexpression. Collectively, our data demonstrated the novel role of circ_0001897/mir-29c-3p/TGFB2 axis in regulating HG-induced inflammation and angiogenesis of HRECs. These findings suggest that targeting circ_0001897 could serve as an intervention strategy to ameliorate DR.

Cite

CITATION STYLE

APA

Gong, Y., Li, X., & Xie, L. (2022). Circ_0001897 regulates high glucose-induced angiogenesis and inflammation in retinal microvascular endothelial cells through miR-29c-3p/transforming growth factor beta 2 axis. Bioengineered, 13(5), 11694–11705. https://doi.org/10.1080/21655979.2022.2070997

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free