Deep ordinal regression for pledge specificity prediction

3Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

Abstract

Many pledges are made in the course of an election campaign, forming important corpora for political analysis of campaign strategy and governmental accountability. At present, there are no publicly available annotated datasets of pledges, and most political analyses rely on manual analysis. In this paper we collate a novel dataset of manifestos from eleven Australian federal election cycles, with over 12,000 sentences annotated with specificity (e.g., rhetorical vs. detailed pledge) on a fine-grained scale. We propose deep ordinal regression approaches for specificity prediction, under both supervised and semi-supervised settings, and provide empirical results demonstrating the effectiveness of the proposed techniques over several baseline approaches. We analyze the utility of pledge specificity modeling across a spectrum of policy issues in performing ideology prediction, and further provide qualitative analysis in terms of capturing party-specific issue salience across election cycles.

Cite

CITATION STYLE

APA

Subramanian, S., Cohn, T., & Baldwin, T. (2019). Deep ordinal regression for pledge specificity prediction. In EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference (pp. 1729–1740). Association for Computational Linguistics. https://doi.org/10.18653/v1/d19-1182

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free