Prediction of wheel squeal amplitude

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The prediction of vibration amplitude of wheel squeal noise is investigated using a concise mathematical model which has been validated with results from a rolling contact two disk test rig. The model is used to perform an energy-based analysis to determine a closed form solution to the steady state limit cycle amplitude of creep and vibration oscillations during squealing. The analytical solution is first shown to compare well with a numerical solution using an experimentally tuned creep curve with full nonlinear shape. The predicted squeal level trend is then shown to compare well with that recorded at various crabbing (lateral sliding) velocities for the test rig at different rolling speeds. The analytical solution provides insight into why the sound pressure level of squeal noise increases with crabbing velocity. The results highlight the primary importance of crabbing velocity (and angle of attack) and provide important theoretical insight into the mechanisms governing wheel squeal amplitude.

Cite

CITATION STYLE

APA

Meehan, P. A., & Liu, X. (2018). Prediction of wheel squeal amplitude. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design (Vol. 139, pp. 71–82). Springer Verlag. https://doi.org/10.1007/978-3-319-73411-8_4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free