A seascape approach for guiding effective habitat enhancement: Spatially explicit modeling of kelp-grazer interactions

6Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Kelp habitats are threatened across the globe, and because of their ecological importance, active conservation and restoration solutions are needed. The use of man-made structures as artificial reefs is one way to enhance kelp habitat by providing suitable substrata, but in the past the ecology of artificial structures has been investigated mainly in contrast to natural coastal habitats, not as elements integrated into the seascape. Indeed, it is now emerging that structuring processes, including ecological interactions (e.g., herbivory), can depend on properties of the surrounding seascape. In Eastern Canada, grazing by the green sea urchin can jeopardize the success of artificial reefs for kelp enhancement. Urchin activity is, however, likely to be influenced by the bottom composition, and thus a seascape approach is needed to integrate urchin behavior and habitat heterogeneity. Adopting a spatially explicit framework, we investigated whether the seascape creates areas of differential grazing risk for kelp by affecting urchin habitat use. Specifically, we transplanted kelp onto modules of artificial substrata distributed on a heterogeneous area that we mapped for bottom type and algal cover. After following kelp survival and urchin distribution over time, we modeled kelp survival as function of urchin metrics and coupled it to urchin use of the habitat models to map grazing risk in the area. Kelp survival was a function of the frequency of the urchins presence. Urchins avoided sandy patches, while bottom composition and algal cover modulated the within-patch urchin use of the habitat, creating heterogeneity in grazing risk. Discrete seascape features (boulders) also increased the grazing risk locally. The heterogeneity of coastal seafloor can thus play a major role in determining the ecological outcomes on artificial structures. Incorporating this information when planning artificial reefs could minimize the detrimental grazing risk, thereby increasing the success of artificial reefs for kelp habitat enhancement.

Cite

CITATION STYLE

APA

Ferrario, F., Suskiewicz, T., & Johnson, L. E. (2021). A seascape approach for guiding effective habitat enhancement: Spatially explicit modeling of kelp-grazer interactions. Elementa, 9(1). https://doi.org/10.1525/elementa.2021.00013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free