With the rapid rise of social media, the photo-taking behavior of tourists and their uploaded photos provide a new perspective to explore landscape visual characters. In this study, we provide methodological advancements for assessing landscape visual quality based on content analysis of user-generated photographs. The purpose is to demonstrate an empirical method for evaluating visual indicators reflected in photographs through a case study application. This research takes the core cultural landscape area of Wuhan University as the research scope. The photographs shared on a famous Chinese social media platform Sina Weibo during the Cherry Blossom Festival, together with tourists’ trajectory data, were used as data sources. Based on a fixed-point photography experiment, the spatial relationship between the scenic spot and the observation point was illustrated. Utilizing a semi-automatic photo content analysis founded on computer vision technology, landscape visual attributes of each attraction were studied thoroughly regarding complexity, visual scale, and color. The results indicate that the Old Dormitory is the most popular scenic spot with diverse viewing angles, strikingly vivid colors, and rich color combinations. Complexity and color play key roles in landscape visual quality, while the depth of view has a subtle impact, which suggests the depth-to-height ratio of less than 1 is the best distance for viewers to take photographs. In all, the mapping relationship between landscape visual attributes and viewers’ perception was revealed in the present work.
CITATION STYLE
Zhang, X., Xu, D., & Zhang, N. (2022). Research on Landscape Perception and Visual Attributes Based on Social Media Data—A Case Study on Wuhan University. Applied Sciences (Switzerland), 12(16). https://doi.org/10.3390/app12168346
Mendeley helps you to discover research relevant for your work.