Atrial electrical remodeling is an important factor in the development and persistence of atrial fibrillation. The aim of this study was to examine the effects of atrial angiotensin-converting enzyme-2 overexpression on atrial electrical remodeling and to elucidate the molecular mechanisms underlying these effects. Twenty-eight male and female dogs were randomly divided into the following 4 groups: a shamoperation group, a control group, an adenovirus-enhanced green fluorescent protein (Ad-EGFP) gene group and an Ad-ACE2 gene group. All dogs in the Ad-EGFP and Ad-ACE2 groups were rhythmized at 450 bpm for 14 days. Two weeks later, all the dogs underwent thoracotomy and epicardial gene painting. On day 21 after gene transfer, all the animals were subjected to electrophysiological and molecular studies. AF induction rates and durations were significantly increased in the control and Ad- EGFP groups compared to the sham-operated and Ad-ACE2 groups. Transient receptor potential melastatin 7 (TRPM7) expression levels in the Ad-EGFP and control groups were significantly higher than those in the sham-operated and Ad-ACE2 groups. Basal [Mg2+]i was significantly decreased in siRNA transfected cells compared with control and non-silencing siRNA-transfected cells. Our results suggest that ACE2 overexpression suppresses atrial electrical remodeling and improves atrial function through the TRPM7 signaling pathway.
CITATION STYLE
Zhou, T., Han, Z., Gu, J., Chen, S., Fan, Y., Zhang, H., … Wang, C. (2017). Angiotensin-converting enzyme-2 overexpression improves atrial electrical remodeling through TRPM7 signaling pathway. Oncotarget, 8(45), 78726–78733. https://doi.org/10.18632/oncotarget.20221
Mendeley helps you to discover research relevant for your work.