Proton transport activity of the purified vacuolar H+-ATPase from oats: Direct stimulation by Cl-

43Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To determine whether the detergent-solubilized and purified vacuolar H+-ATPase from plants was active in H+ transport, we reconstituted the purified vacuolar ATPase from oat roots (Avena sativa var Lang). Triton-solubilized ATPase activity was purified by gel filtration and ion exchange chromatography. Incorporation of the vacuolar ATPase into liposomes formed from Escherichia coli phospholipids was accomplished by removing Triton X-100 with SM-2 Bio-beads. ATP hydrolysis activity of the reconstituted ATPase was stimulated twofold by gramicidin, suggesting that the enzyme was incorporated into sealed proteoliposomes. Acidification of K+-loaded proteoliposomes, monitored by the quenching of acridine orange fluorescence, was stimulated by valinomycin. Because the presence of K+ and valinomycin dissipates a transmembrane electrical potential, the results indicate that ATP-dependent H+ pumping was electrogenic. Both H+ pumping and ATP hydrolysis activity of reconstituted preparations were completely inhibited by <50 nanomolar bafilomycin A1, a specific vacuolar type ATPase inhibitor. The reconstituted H+ pump was also inhibited by N,N′-dicyclohexylcarbodiimide or NO3- but not by azide or vanadate. Chloride stimulated both ATP hydrolysis by the purified ATPase and H+ pumping by the reconstituted ATPase in the presence of K+ and valinomycin. Hence, our results support the idea that the vacuolar H+-pumping ATPase from oat, unlike some animal vacuolar ATPases, could be regulated directly by cytoplasmic Cl- concentration. The purified and reconstituted H+-ATPase was composed of 10 polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. These results demonstrate conclusively that the purified vacuolar ATPase is a functional electrogenic H+ pump and that a set of 10 polypeptides is sufficient for coupled ATP hydrolysis and H+ translocation.

Cite

CITATION STYLE

APA

Ward, J. M., & Sze, H. (1992). Proton transport activity of the purified vacuolar H+-ATPase from oats: Direct stimulation by Cl-. Plant Physiology, 99(3), 925–931. https://doi.org/10.1104/pp.99.3.925

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free