The transcriptomic response of the murine thyroid gland to iodide overload and the role of the nrf2 antioxidant system

12Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Background: Thyroid follicular cells have physiologically high levels of reactive oxygen species because oxidation of iodide is essential for the iodination of thyroglobulin (Tg) during thyroid hormone synthesis. Thyroid follicles (the functional units of the thyroid) also utilize incompletely understood autoregulatory mechanisms to defend against exposure to excess iodide. To date, no transcriptomic studies have investigated these phenomena in vivo. Nuclear erythroid factor 2 like 2 (Nrf2 or Nfe2l2) is a transcription factor that regulates the expression of numerous antioxidant and other cytoprotective genes. We showed previously that the Nrf2 pathway regulates the antioxidant defense of follicular cells, as well as Tg transcription and Tg iodination. We, thus, hypothesized that Nrf2 might be involved in the transcriptional response to iodide overload. Methods: C57BL6/J wild-type (WT) or Nrf2 knockout (KO) male mice were administered regular water or water supplemented with 0.05% sodium iodide for seven days. RNA from their thyroids was prepared for next-generation RNA sequencing (RNA-Seq). Gene expression changes were assessed and pathway analyses were performed on the sets of differentially expressed genes. Results: Analysis of differentially expressed messenger RNAs (mRNAs) indicated that iodide overload upregulates inflammatory-, immune-, fibrosis-and oxidative stress-related pathways, including the Nrf2 pathway. Nrf2 KO mice showed a more pronounced inflammatory–autoimmune transcriptional response to iodide than WT mice. Compared to previously published datasets, the response patterns observed in WT mice had strong similarities with the patterns typical of Graves’ disease and papillary thyroid carcinoma (PTC). Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) also responded to iodide overload, with the latter targeting mRNAs that participate mainly in inflammation pathways. Conclusions: Iodide overload induces the Nrf2 cytoprotective response and upregulates inflammatory, immune, and fibrosis pathways similar to autoimmune hyperthyroidism (Graves’ disease) and PTC.

References Powered by Scopus

Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

55244Citations
N/AReaders
Get full text

edgeR: A Bioconductor package for differential expression analysis of digital gene expression data

28750Citations
N/AReaders
Get full text

HTSeq-A Python framework to work with high-throughput sequencing data

14407Citations
N/AReaders
Get full text

Cited by Powered by Scopus

The keap1/nrf2 signaling pathway in the thyroid—2020 update

35Citations
N/AReaders
Get full text

Keap1/nrf2 signaling pathway

27Citations
N/AReaders
Get full text

Patent review (2017–2020) of the keap1/nrf2 pathway using patseer pro: Focus on autoimmune diseases

13Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Chartoumpekis, D. V., Ziros, P. G., Georgakopoulos-Soares, I., Smith, A. A. T., Marques, A. C., Ibberson, M., … Sykiotis, G. P. (2020). The transcriptomic response of the murine thyroid gland to iodide overload and the role of the nrf2 antioxidant system. Antioxidants, 9(9), 1–21. https://doi.org/10.3390/antiox9090884

Readers' Seniority

Tooltip

Researcher 4

50%

PhD / Post grad / Masters / Doc 3

38%

Professor / Associate Prof. 1

13%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 4

50%

Agricultural and Biological Sciences 2

25%

Computer Science 1

13%

Arts and Humanities 1

13%

Save time finding and organizing research with Mendeley

Sign up for free