The ultraviolet radiation present in sunlight is immune suppressive. Recently we showed that solar-simulated ultraviolet radiation (ultraviolet A + B; 295-400 nm), applied after immunization, suppressed immunologic memory and the elicitation of delayed-type hypersensitivity to the common opportunistic pathogen, Candida albicans. Further, we found that wavelengths in the ultraviolet A region of the solar spectrum (320-400 nm), devoid of ultraviolet B, were equally effective in activating immune suppression as ultraviolet A + B radiation. Here we report on the mechanisms involved. Maximal immune suppression was found when mice were exposed to solar-simulated ultraviolet radiation 7-9 d post immunization. No immune suppression was found in ultraviolet-irradiated mice injected with monoclonal anti-interleukin-10 antibody, or mice exposed to solar-simulated ultraviolet radiation and injected with recombinant interleukin-12. Suppressor lymphocytes were found in the spleens of mice exposed to ultraviolet A + B radiation. In addition, antigen-specific suppressor T cells (CD3+, CD4+, DX5+) were found in the spleens of mice exposed to ultraviolet A radiation. Applying liposomes containing bacteriophage T4N5 to the skin of mice exposed to solar-simulated ultraviolet A + B radiation, or mice exposed to ultraviolet A radiation, blocked immune suppression, demonstrating an essential role for ultraviolet-induced DNA damage in the suppression of established immune reactions. These findings indicate that overlapping immune suppressive mechanisms are activated by ultraviolet A and ultraviolet A + B radiation. Moreover, our findings demonstrate that ultraviolet radiation activates similar immunologic pathways to suppress the induction of, or the elicitation of, the immune response.
CITATION STYLE
Nghiem, D. X., Kazimi, N., Mitchell, D. L., Vink, A. A., Ananthaswamy, H. N., Kripke, M. L., & Ullrich, S. E. (2002). Mechanisms underlying the suppression of established immune responses by ultraviolet radiation. Journal of Investigative Dermatology, 119(3), 600–608. https://doi.org/10.1046/j.1523-1747.2002.01845.x
Mendeley helps you to discover research relevant for your work.