The question of how humans predict outcomes of observed motor actions by others is a fundamental problem in cognitive and social neuroscience. Previous theoretical studies have suggested that the brain uses parts of the forward model (used to estimate sensory outcomes of self-generated actions) to predict outcomes of observed actions. However, this hypothesis has remained controversial due to the lack of direct experimental evidence. To address this issue, we analyzed the behavior of darts experts in an understanding learning paradigm and utilized computational modeling to examine how outcome prediction of observed actions affected the participants’ ability to estimate their own actions. We recruited darts experts because sports experts are known to have an accurate outcome estimation of their own actions as well as prediction of actions observed in others. We first show that learning to predict the outcomes of observed dart throws deteriorates an expert’s abilities to both produce his own darts actions and estimate the outcome of his own throws (or self-estimation). Next, we introduce a state-space model to explain the trial-by-trial changes in the darts performance and self-estimation through our experiment. The model-based analysis reveals that the change in an expert’s self-estimation is explained only by considering a change in the individual’s forward model, showing that an improvement in an expert’s ability to predict outcomes of observed actions affects the individual’s forward model. These results suggest that parts of the same forward model are utilized in humans to boThestimate outcomes of self-generated actions and predict outcomes of observed actions.
CITATION STYLE
Ikegami, T., & Ganesh, G. (2017). Shared mechanisms in the estimation of self-generated actions and the prediction of other’s actions by humans. ENeuro, 4(6). https://doi.org/10.1523/ENEURO.0341-17.2017
Mendeley helps you to discover research relevant for your work.