The life cycle of higher plants alternates between the diploid sporophytic and the haploid gametophytic phases. In angiosperms, male and female gametophytes develop within the sporophyte. During female gametophyte (FG) development, a single archesporial cell enlarges and differentiates into a megaspore mother cell, which then undergoes meiosis to give rise to four megaspores. In most species of higher plants, including Arabidopsis thaliana, the megaspore closest to the chalaza develops into the functional megaspore (FM), and the remaining three megaspores degenerate. Here, we examined the role of cytokinin signaling in FG development. We characterized the FG phenotype in three triple mutants harboring non-overlapping T-DNA insertions in cytokinin AHK receptors. We demonstrate that even the strongest mutant is not a complete null for the cytokinin receptors. Only the strongest mutant displayed a near fully penetrant disruption of FG development, and the weakest triple ahk mutant had only a modest FG phenotype. This suggests that cytokinin signaling is essential for FG development, but that only a low threshold of signaling activity is required for this function. Furthermore, we demonstrate that there is elevated cytokinin signaling localized in the chalaza of the ovule, which is enhanced by the asymmetric localization of cytokinin biosynthetic machinery and receptors. We show that an FM-specific marker is absent in the multiple ahk ovules, suggesting that disruption of cytokinin signaling elements in Arabidopsis blocks the FM specification. Together, this study reveals a chalazal-localized sporophytic cytokinin signal that plays an important role in FM specification in FG development. © 2012 The Authors.
CITATION STYLE
Cheng, C. Y., Mathews, D. E., Schaller, G. E., & Kieber, J. J. (2013). Cytokinin-dependent specification of the functional megaspore in the Arabidopsis female gametophyte. Plant Journal, 73(6), 929–940. https://doi.org/10.1111/tpj.12084
Mendeley helps you to discover research relevant for your work.