Background: Staphylococcus aureus is an important pathogen that causes biofilm-associated infection in humans. Autoinducer 2 (AI-2), a quorum-sensing (QS) signal for interspecies communication, has a wide range of regulatory functions in both Gram-positive and Gram-negative bacteria, but its exact role in biofilm formation in S. aureus remains unclear. Results: Here we demonstrate that mutation of the AI-2 synthase gene luxS in S. aureus RN6390B results in increased biofilm formation compared with the wild-type (WT) strain under static, flowing and anaerobic conditions and in a mouse model. Addition of the chemically synthesized AI-2 precursor in the luxS mutation strain (ΔluxS) restored the WT phenotype. Real-time RT-PCR analysis showed that AI-2 activated the transcription of icaR, a repressor of the ica operon, and subsequently a decreased level of icaA transcription, which was presumably the main reason why luxS mutation influences biofilm formation. Furthermore, we compared the roles of the agr-mediated QS system and the LuxS/AI-2 QS system in the regulation of biofilm formation using the ΔluxS strain, RN6911 and the Δagr ΔluxS strain. Our data indicate a cumulative effect of the two QS systems on the regulation of biofilm formation in S. aureus. Conclusion: These findings demonstrate that AI-2 can decrease biofilm formation in S. aureus via an icaR-activation pathway. This study may provide clues for therapy in S. aureus biofilm-associated infection. © 2012 Yu et al.; licensee BioMed Central Ltd.
CITATION STYLE
Yu, D., Zhao, L., Xue, T., & Sun, B. (2012). Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiology, 12. https://doi.org/10.1186/1471-2180-12-288
Mendeley helps you to discover research relevant for your work.