By using a coupled land surface-atmosphere model with initial conditions of varying resolution and ensembles of systematically changed soil moisture, convective-scale simulations of a typical frontal rainstorm in the Yangtze River Basin are collected to investigate: (1) effects of different datasets on the simulated frontal mesoscale convective systems (MCSs); (2) possible linkages between soil moisture, planetary boundary layer (PBL), MCSs and precipitation in this modeled rainstorm. Firstly, initial soil moisture differences can affect the PBL, MCSs and precipitation of this frontal rainstorm. Specially, for a 90 mm precipitation forecast, the Threat score (TS) can increase 6.61% by using the Global Land Data Assimilation System (GLDAS) soil moisture. Secondly, sensitivity experiment results show that the near-surface thermodynamic conditions are more sensitive to dry soil than wet due to the initial moist surface; atmosphere conditions have suppressed the relations between soil and atmosphere; and decreased precipitation can be found over both wet and dry surfaces. Generally, a positive feedback between soil moisture and the near-surface thermodynamic conditions is identified, while the relations between soil moisture and precipitation are quite complicated. This relationship shows a daytime mixing of warm surface soil over dry surfaces and a daytime evaporation of adequate moisture over wet surfaces. The large-scale forcing can affect these relations and finally cause decreased precipitation over both wet and dry surfaces.
CITATION STYLE
Min, J., Guo, Y., & Wang, G. (2016). Impacts of soil moisture on typical frontal rainstorm in Yangtze River Basin. Atmosphere, 7(3). https://doi.org/10.3390/atmos7030042
Mendeley helps you to discover research relevant for your work.