Effect of Substituents at Imide Positions on the Laser Performance of 1,7-Bay-Substituted Perylenediimide Dyes

8Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Perylenediimide (PDI) compounds with no substituents in their core are widely used as the active units of thin-film organic lasers. Recently, bay-substituted PDIs (b-PDIs) bearing two sterically hindering diphenylphenoxy groups at the 1,7-bay positions have received great attention because they show red-shifted emission with respect to bay-unsubstituted PDIs, while maintaining high photoluminescence (PL) quantum yields and low amplified spontaneous emission (ASE) thresholds even at high doping rates. However, their ASE photostability is relatively low compared to that of state-of-the-art PDIs. Thus, the design ofb-PDIs with improved ASE photostability remains a challenge. Here, the synthesis of twob-PDIs with phenyl-type substituents at the imide positions is reported. Complete characterization of their optical properties, including absorption, PL, ASE, and transient spectroscopy, supported also by quantum chemical calculations, is performed with the dyes diluted in either a liquid solvent or a polystyrene film. Film experiments were accomplished at very low doping rates, to resemble the isolated molecule behavior, and also in a range of increasing doping rates, to investigate concentration quenching effects. The reportedb-PDIs show improved ASE photostability (3-fold) with respect tob-PDIs with aliphatic-type substituents at the imide positions, whilst they show more propensity toward aggregation.

Cite

CITATION STYLE

APA

Muñoz-Mármol, R., Boj, P. G., Villalvilla, J. M., Quintana, J. A., Zink-Lorre, N., Sastre-Santos, Á., … Díaz-García, M. A. (2021). Effect of Substituents at Imide Positions on the Laser Performance of 1,7-Bay-Substituted Perylenediimide Dyes. Journal of Physical Chemistry C, 125(22), 12277–12288. https://doi.org/10.1021/acs.jpcc.1c00833

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free