Seed longevity is the most important trait related to the management of gene banks because it governs the regeneration cycle of seeds. Thus, seed longevity is a quantitative trait. Prior to the discovery of molecular markers, classical genetic studies have been performed to identify the genetic determinants of this trait. Post-2000 saw the use of DNA-based molecular markers and modern biotechnological tools, including RNA sequence (RNA-seq) analysis, to understand the genetic factors determining seed longevity. This review summarizes the most important and relevant genetic studies performed in Arabidopsis (24 reports), rice (25 reports), barley (4 reports), wheat (9 reports), maize (8 reports), soybean (10 reports), tobacco (2 reports), lettuce (1 report) and tomato (3 reports), in chronological order, after discussing some classical studies. The major genes identified and their probable roles, where available, are debated in each case. We conclude by providing information about many different collections of various crops available worldwide for advanced research on seed longevity. Finally, the use of new emerging technologies, including RNA-seq, in seed longevity research is emphasized by providing relevant examples.
CITATION STYLE
Arif, M. A. R., Afzal, I., & Börner, A. (2022, March 1). Genetic Aspects and Molecular Causes of Seed Longevity in Plants—A Review. Plants. MDPI. https://doi.org/10.3390/plants11050598
Mendeley helps you to discover research relevant for your work.