Indium tin oxide (ITO) transparent electrodes are troubled with high cost and poor mechanical stability. In this study, layer-by-layer (LBL)-processed thin films with single-walled carbon nanotubes (SWNTs) exhibited high transparency and electrical conductivity as a candidate for ITO replacement. The repetitive deposition of polycations and stabilized SWNTs with a negative surfactant exhibits sufficiently linear film growth and high optoelectronic performance to be used as transparent electrodes for vertically aligned (VA) liquid crystal display (LCD) cells. The LC molecules were uniformly aligned on the all of the prepared LBL electrodes. VA LCD cells with SWNT LBL electrodes exhibited voltage-transmittance (V-T) characteristics similar to those with the conventional ITO electrodes. Although the response speeds were slower than the LCD cell with the ITO electrode, as the SWNT layers increased, the display performance was closer to the LCD cells with conventional ITO electrode. This work demonstrated the good optoelectronic performance and alignment compatibility with LC molecules of the SWNT LBL assemblies, which are potential alternatives to ITO films as transparent electrodes for LCDs.
CITATION STYLE
Moon, G., Jang, W., Son, I., Cho, H. A., Park, Y. T., & Lee, J. H. (2018). Fabrication of new liquid crystal device using layer-by-layer thin film process. Processes, 6(8). https://doi.org/10.3390/pr6080108
Mendeley helps you to discover research relevant for your work.