In this study we investigated the extent and time course of neuronal cell death and the regulation of the proliferating cell nuclear antigen (PCNA) in the different retinal cell layers following ischemia-reperfusion injury. Retinal ischemia was induced by controlled elevation of the intraocular pressure for a duration of 60 min. Changes in thickness and cell numbers in the retinal cell layers were analyzed at various time points (1 h to 4 weeks) after reperfusion. In parallel, apoptotic cell death was determined by the TUNEL method and the expression of PCNA analyzed by immunocytochemistry. In addition, we tested whether PCNA is expressed in neurons by double immunocytochemistry. The reduction in thickness was found to be less pronounced in the inher nuclear layer (INL). Correspondingly, cell numbers decreased by only 33% in the inner retina, but by more than 80% in the outer nuclear layer (ONL). Alterations in glial cell numbers did not contribute significantly to postischemic changes in the INL and ONL as assessed by using immunocytochemical markers for microglial and Muller cells. The time course of cell death determined by the TUNEL technique also differed markedly in the retinal layers being rapid and transient in the inner retina but delayed and prolonged in the ONL. PCNA immunoreactivity was undetectable in the normal retina, but was specifically induced in neurons of the inner retina within 1 h after reperfusion and was sustained for at least 4 weeks. We conclude that in contrast to photoreceptors in the ONL, a significant proportion of inner retinal neurons is resistant to ischemic insult induced by transiently increased intraocular pressure and that PCNA may possibly play a role in the selective postischemic survival of these cells.
CITATION STYLE
Ju, W. K., Kim, K. Y., Hofmann, H. D., Kim, I. B., Lee, M. Y., Oh, S. J., & Chun, M. H. (2000). Selective neuronal survival and upregulation of PCNA in the rat inner retina following transient ischemia. Journal of Neuropathology and Experimental Neurology, 59(3), 241–250. https://doi.org/10.1093/jnen/59.3.241
Mendeley helps you to discover research relevant for your work.