Motivated by estimation of quantum noise models, we study the problem of learning a Pauli channel, or more generally the Pauli error rates of an arbitrary channel. By employing a novel reduction to the “Population Recovery” problem, we give an extremely simple algorithm that learns the Pauli error rates of an n-qubit channel to precision ε in `∞ using just O(1/ε2) log(n/ε) applications of the channel. This is optimal up to the logarithmic factors. Our algorithm uses only unentangled state preparation and measurements, and the post-measurement classical runtime is just an O(1/ε) factor larger than the measurement data size. It is also impervious to a limited model of measurement noise where heralded measurement failures occur independently with probability ≤ 1/4. We then consider the case where the noise channel is close to the identity, meaning that the no-error outcome occurs with probability 1 − η. In the regime of small η we extend our algorithm to achieve multiplicative precision 1 ± ε (i.e., additive precision εη) using just O(ε21η) log(n/ε) applications of the channel.
CITATION STYLE
Flammia, S. T., & O’Donnell, R. (2021). Pauli error estimation via population recovery. Quantum, 5. https://doi.org/10.22331/Q-2021-09-23-549
Mendeley helps you to discover research relevant for your work.