Pauli error estimation via population recovery

16Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Motivated by estimation of quantum noise models, we study the problem of learning a Pauli channel, or more generally the Pauli error rates of an arbitrary channel. By employing a novel reduction to the “Population Recovery” problem, we give an extremely simple algorithm that learns the Pauli error rates of an n-qubit channel to precision ε in `∞ using just O(1/ε2) log(n/ε) applications of the channel. This is optimal up to the logarithmic factors. Our algorithm uses only unentangled state preparation and measurements, and the post-measurement classical runtime is just an O(1/ε) factor larger than the measurement data size. It is also impervious to a limited model of measurement noise where heralded measurement failures occur independently with probability ≤ 1/4. We then consider the case where the noise channel is close to the identity, meaning that the no-error outcome occurs with probability 1 − η. In the regime of small η we extend our algorithm to achieve multiplicative precision 1 ± ε (i.e., additive precision εη) using just O(ε21η) log(n/ε) applications of the channel.

Cite

CITATION STYLE

APA

Flammia, S. T., & O’Donnell, R. (2021). Pauli error estimation via population recovery. Quantum, 5. https://doi.org/10.22331/Q-2021-09-23-549

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free