Dihydroartemisinin (DHA) is a potent anti-cancer drug that has limited clinical applications due to poor water solubility and low bioavailability. We designed a biodegradable poly(ethylene glycol) methyl ether-poly(ε-caprolactone) (MPEG-PCL) micelle carrier for DHA using the self-assembly method. The DHA/MPEG-PCL nanoparticles were spherical with an average particle size of 30.28 ± 0.27 nm, and released the drug in a sustained manner in aqueous solution. The drug-loaded nanoparticles showed dose-dependent toxicity in HeLa cells by inducing cycle arrest and apoptosis. Furthermore, compared to free DHA, the DHA/MPEG-PCL nanoparticles showed higher therapeutic efficacy and lower toxicity in vivo, and significantly inhibited tumor growth and prolonged the survival of tumor-bearing nude mice. In addition, the tumor tissues of the DHA/MPEG-PCL-treated mice showed a marked decline in the in situ expression of proliferation and angiogenesis markers. Taken together, the self-assembled DHA/MPEG-PCL nanoparticles are a highly promising delivery system for targeted cancer treatment.
CITATION STYLE
Lu, Y., Wen, Q., Luo, J., Xiong, K., Wu, Z. X., Wang, B. Q., … Fu, S. Z. (2020). Self-assembled dihydroartemisinin nanoparticles as a platform for cervical cancer chemotherapy. Drug Delivery, 27(1), 876–887. https://doi.org/10.1080/10717544.2020.1775725
Mendeley helps you to discover research relevant for your work.