Panax Notoginseng flower saponins (PNFS) inhibit LPS-stimulated NO overproduction and iNOS gene overexpression via the suppression of TLR4-mediated MAPK/NF-kappa B signaling pathways in RAW264.7 macrophages

38Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Panax Notoginseng flower saponins (PNFS) are the main active component of Panax notoginseng (Burk) F. H. Chen flower bud (PNF) and possess significant anti-inflammatory efficacy. This study aims to explore the mechanisms underlying PNFS' antiflammatory action in RAW264.7 macrophages. Methods: A cell counting kit-8 assay was used to determine the viability of RAW264.7 macrophages. Anti-inflammation effects of PNFS in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were measured based on the detection of nitric oxide (NO) overproduction (Griess method, DAF-FM DA fluorescence assay and NO2- scavenging assay), and interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha gene overexpression (real-time PCR and ELISA). Inducible nitric oxide synthase (iNOS) gene overexpression was determined by real-time PCR and western blotting. iNOS enzyme activity was also assayed. The mechanisms underlying the suppression of iNOS gene overexpression by PNFS were explored using real-time PCR and western blotting to assess mRNA and protein levels of components of the Toll-like receptor 4 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor-kappa B (NF-kappa B) signaling pathways. Results: PNFS (50, 100, 200 μg/mL) significantly reduced LPS-induced overproduction of NO (P < 0.001, P < 0.001, P < 0.001) and IL-6 (P = 0.103, P < 0.001, P < 0.001), but did not affect TNF-alpha overproduction. PNFS (50, 100, 200 μg/mL) also markedly decreased LPS-activated iNOS (P < 0.001, P < 0.001, P < 0.001) and TLR4 gene overexpression (P = 0.858, P = 0.046, P = 0.005). Furthermore, treatment with PNFS (200 μg/mL) suppressed the phosphorylation of MAPKs including P38 (P = 0.001), c-Jun N-terminal kinase (JNK) (P = 0.036) and extracellular-signal regulated kinase (ERK) 1/2 (P = 0.021). PNFS (200 μg/mL) inhibited the activation of the NF-kappa B signaling pathway by preventing the phosphorylation of inhibitor of NF-kappa B alpha (I-kappa B alpha) (P = 0.004) and P65 (P = 0.023), but PNFS (200 μg/mL) could not activate the LPS-induced PI3K-Akt signaling pathway. Conclusions: PNFS significantly down-regulated iNOS gene overexpression and thereby decreased NO overproduction via the inhibition of TLR4-mediated MAPK/NF-kappa B signaling pathways, but not the PI3K/Akt signaling pathway.

Cite

CITATION STYLE

APA

Peng, X. X., Zhang, S. H., Wang, X. L., Ye, T. J., Li, H., Yan, X. F., … Hu, X. D. (2015). Panax Notoginseng flower saponins (PNFS) inhibit LPS-stimulated NO overproduction and iNOS gene overexpression via the suppression of TLR4-mediated MAPK/NF-kappa B signaling pathways in RAW264.7 macrophages. Chinese Medicine (United Kingdom), 10(1). https://doi.org/10.1186/s13020-015-0045-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free