Three-Dimensional stochastic Off-Lattice model of binding chemistry in crowded environments

3Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Molecular crowding is one of the characteristic features of the intracellular environment, defined by a dense mixture of varying kinds of proteins and other molecules. Interaction with these molecules significantly alters the rates and equilibria of chemical reactions in the crowded environment. Numerous fundamental activities of a living cell are strongly influenced by the crowding effect, such as protein folding, protein assembly and disassembly, enzyme activity, and signal transduction. Quantitatively predicting how crowding will affect any particular process is, however, a very challenging problem because many physical and chemical parameters act synergistically in ways that defy easy analysis. To build a more realistic model for this problem, we extend a prior stochastic off-lattice model from two-dimensional (2D) to three-dimensional (3D) space and examine how the 3D results compare to those found in 2D. We show that both models exhibit qualitatively similar crowding effects and similar parameter dependence, particularly with respect to a set of parameters previously shown to act linearly on total reaction equilibrium. There are quantitative differences between 2D and 3D models, although with a generally gradual nonlinear interpolation as a system is extended from 2D to 3D. However, the additional freedom of movement allowed to particles as thickness of the simulation box increases can produce significant quantitative change as a system moves from 2D to 3D. Simulation results over broader parameter ranges further show that the impact of molecular crowding is highly dependent on the specific reaction system examined. © 2012 Lee et al.

Cite

CITATION STYLE

APA

Lee, B., LeDuc, P. R., & Schwartz, R. (2012). Three-Dimensional stochastic Off-Lattice model of binding chemistry in crowded environments. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0030131

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free