Recently, the decision trees have been adopted among the preeminent utilized classification models. They acquire their fame from their efficiency in predictive analytics, easy to interpret and implicitly perform feature selection. This latter perspective is one of essential significance in Educational Data Mining (EDM), in which selecting the most relevant features has a major impact on classification accuracy enhancement. The main contribution is to build a new multi-objective decision tree, which can be used for feature selection and classification. The proposed Decisive Decision Tree (DDT) is introduced and constructed based on a decisive feature value as a feature weight related to the target class label. The traditional Iterative Dichotomizer 3 (ID3) algorithm and the proposed DDT are compared using three datasets in terms of some ID3 issues, including logarithmic calculation complexity and multi-values features selection. The results indicated that the proposed DDT outperforms the ID3 in the developing time. The accuracy of the classification is improved on the basis of 10-fold cross-validation for all datasets with the highest accuracy achieved by the proposed method is 92% for the student.por dataset and holdout validation for two datasets, i.e. Iraqi and Student-Math. The experiment also shows that the proposed DDT tends to select attributes that are important rather than multi-value.
CITATION STYLE
Ahmed, S. T., Al-Hamdani, R., & Croock, M. S. (2019). Developed third iterative dichotomizer based on feature decisive values for educational data mining. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), 209–217. https://doi.org/10.11591/ijeecs.v18.i1.pp209-217
Mendeley helps you to discover research relevant for your work.