Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning

5Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

There is large intersubject variability in cerebrovascular hemodynamic and systemic physiological responses induced by a verbal fluency task (VFT) under colored light exposure (CLE). We hypothesized that machine learning would enable us to classify the response patterns and provide new insights into the common response patterns between subjects. In total, 32 healthy subjects (15 men and 17 women, age: 25.5 ± 4.3 years) were exposed to two different light colors (red vs. blue) in a randomized cross-over study design for 9 min while performing a VFT. We used the systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS) approach to measure cerebrovascular hemodynamics and oxygenation at the prefrontal cortex (PFC) and visual cortex (VC) concurrently with systemic physiological parameters. We found that subjects were suitably classified by unsupervised machine learning into different groups according to the changes in the following parameters: end-tidal carbon dioxide, arterial oxygen saturation, skin conductance, oxygenated hemoglobin in the VC, and deoxygenated hemoglobin in the PFC. With hard clustering methods, three and five different groups of subjects were found for the blue and red light exposure, respectively. Our results highlight the fact that humans show specific reactivity types to the CLE-VFT experimental paradigm.

Cite

CITATION STYLE

APA

Zohdi, H., Natale, L., Scholkmann, F., & Wolf, U. (2022). Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning. Brain Sciences, 12(11). https://doi.org/10.3390/brainsci12111449

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free